Modulative властивість є один , що дозволяє проводити операції з числами , не зраджуючи результат рівності. Це особливо корисно пізніше в алгебрі, оскільки множення чи додавання на коефіцієнти, що не змінюють результат, дозволяє спростити деякі рівняння.
Для додавання і віднімання додавання нуля не змінює результат. У разі множення та ділення множення чи ділення на одне також не змінює результат. Наприклад, додавання 5 до 0 все ще 5. Помноження 1000 на 1 все ще є 1000.
Фактори нульові для додавання та один для множення модульні для цих операцій. Арифметичні операції крім модулятивного властивості мають кілька властивостей, які сприяють вирішенню математичних задач.
Арифметичні операції та властивість модуляції
Арифметичні операції - це додавання, віднімання, множення та ділення. Ми будемо працювати з набором натуральних чисел.
Сума
Властивість, яка називається нейтральним елементом, дозволяє нам додати додавання, не змінюючи результат. Це говорить нам, що нуль є нейтральним елементом суми.
Як таке, кажуть, що це модуль додавання і, отже, назва модулятивного властивості.
Наприклад:
(3 + 5) + 9 + 4 + 0 = 21
4 + 5 + 9 + 3 + 0 = 21
2 + 3 + 0 = 5
1000 + 8 + 0 = 1008
500 + 0 = 500
233 + 1 + 0 = 234
25000 + 0 = 25000
1623 + 2 + 0 = 1625
400 + 0 = 400
869 + 3 + 1 + 0 = 873
78 + 0 = 78
542 + 0 = 542
36750 + 0 = 36750
789 + 0 = 789
560 + 3 + 0 = 563
1500000 + 0 = 1500000
7500 + 0 = 7500
658 + 0 = 658
345 + 0 = 345
13562000 + 0 = 13562000
500000 + 0 = 500000
322 + 0 = 322
14600 + 0 = 14600
900000 + 0 = 900000
Модуляційне властивість також вірно для цілих чисел:
(-3) +4+ (-5) = (-3) +4+ (-5) +0
(-33) + (- 1) = (-33) + (- 1) +0
-1 + 35 = -1 + 35 + 0
260000 + (- 12) = 260000 + (- 12) +0
(-500) +32 + (- 1) = (-500) +32 + (- 1) +0
1750000 + (- 250) = 1750000 + (- 250) +0
350000 + (- 580) + (- 2) = 350000 + (- 580) + (- 2) +0
(-78) + (- 56809) = (-78) + (- 56809) +0
8 + 5 + (- 58) = 8 + 5 + (- 58) +0
689 + 854 + (- 78900) = 689 + 854 + (- 78900) +0
1 + 2 + (- 6) + 7 = 1 + 2 + (- 6) + 7 + 0
І, таким же чином, для раціональних чисел:
2/5 + 3/4 = 2/5 + 3/4 + 0
5/8 + 4/7 = 5/8 + 4/7 + 0
½ + 1/4 + 2/5 = ½ + 1/4 + 2/5 + 0
1/3 + 1/2 = 1/3 + 1/2 + 0
7/8 + 1 = 7/8 + 1 + 0
3/8 + 5/8 = 3/8 + 5/8 + 0
7/9 + 2/5 + 1/2 = 7/9 + 2/5 + 1/2 + 0
3/7 + 12/133 = 3/7 + 12/133 + 0
6/8 + 2 + 3 = 6/8 + 2 + 3 + 0
233/135 + 85/9 = 233/135 + 85/9 + 0
9/8 + 1/3 + 7/2 = 9/8 + 1/3 + 9/8 + 0
1236/122 + 45/89 = 1236/122 + 45/89 + 0
24362/745 + 12000 = 24635/745 + 12000 + 0
Також для ірраціональних:
e + √2 = e + √2 + 0
√78 + 1 = √78 + 1 + 0
√9 + √7 + √3 = √9 + √7 + √3 + 0
√7120 + e = √7120 + e + 0
√6 + √200 = √6 + √200 + 0
√56 + 1/4 = √56 + 1/4 + 0
√8 + √35 + √7 = √8 + √35 + √7 + 0
√742 + √3 + 800 = √742 + √3 + 800 + 0
V18 / 4 + √7 / 6 = √18 / 4 + √7 / 6 + 0
√3200 + √3 + √8 + √35 = √3200 + √3 + √8 + √35 + 0
√12 + e + √5 = √12 + e + √5 + 0
√30 / 12 + e / 2 = √30 / 12 + e / 2
√2500 + √365000 = √2500 + √365000 + 0
√170 + √13 + e + √79 = √170 + √13 + e + √79 + 0
І так само для всіх реальних.
2,15 + 3 = 2,15 + 3 + 0
144.12 + 19 + √3 = 144.12 + 19 + √3 + 0
788500 + 13,52 + 18,70 + 1/4 = 788500 + 13,52 + 18,70 + 1/4 + 0
3,14 + 200 + 1 = 3,14 + 200 + 1 + 0
2,4 + 1,2 + 300 = 2,4 + 1,2 + 300 + 0
√35 + 1/4 = √35 + 1/4 + 0
e + 1 = e + 1 + 0
7,32 + 12 + 1/2 = 7,32 + 12 + 1/2 + 0
200 + 500 + 25,12 = 200 + 500 + 25,12 + 0
1000000 + 540,32 + 1/3 = 1000000 + 540,32 + 1/3 +0
400 + 325,48 + 1,5 = 400 + 325 + 1,5 + 0
1200 + 3,5 = 1200 + 3,5 + 0
Віднімання
Застосовуючи модуляційну властивість, як крім того, нуль не змінює результат віднімання:
4-3 = 4-3-0
8-0-5 = 8-5-0
800-1 = 800-1-0
1500-250-9 = 1500-250-9-0
Це задоволено для цілих чисел:
-4-7 = -4-7-0
78-1 = 78-1-0
4500000-650000 = 4500000-650000-0
-45-60-6 = -45-60-6-0
-760-500 = -760-500-0
4750-877 = 4750-877-0
-356-200-4 = 356-200-4-0
45-40 = 45-40-0
58-879 = 58-879-0
360-60 = 360-60-0
1250000-1 = 1250000-1-0
3-2-98 = 3-2-98-0
10000-1000 = 10000-1000-0
745-232 = 745-232-0
3800-850-47 = 3800-850-47-0
Для раціональних:
3 / 4-2 / 4 = 3 / 4-2 / 4-0
120 / 89-1 / 2 = 120 / 89-1 / 2-0
1 / 32-1 / 7-1 / 2 = 1 / 32-1 / 7-1 / 2-0
20 / 87-5 / 8 = 20 / 87-5 / 8-0
132 / 36-1 / 4-1 / 8 = 132 / 36-1 / 4-1 / 8
2 / 3-5 / 8 = 2 / 3-5 / 8-0
1 / 56-1 / 7-1 / 3 = 1 / 56-1 / 7-1 / 3-0
25 / 8-45 / 89 = 25 / 8-45 / 89 -0
3 / 4-5 / 8-6 / 74 = 3 / 4-5 / 8-6 / 74-0
5 / 8-1 / 8-2 / 3 = 5 / 8-1 / 8-2 / 3-0
1 / 120-1 / 200 = 1 / 120-1 / 200-0
1 / 5000-9 / 600-1 / 2 = 1 / 5000-9 / 600-1 / 2-0
3 / 7-3 / 4 = 3 / 7-3 / 4-0
Також для ірраціональних:
Π-1 = Π-1-0
e-√2 = e-√2-0
√3-1 = √-1-0
√250-√9-√3 = √250-√9-√3-0
√85-√32 = √85-√32-0
√5-√92-√2500 = √5-√92-√2500
80180-12 = √180-12-0
√2-√3-√5-√120 = √2-√3-√5-120
15-√7-√32 = 15-√7-√32-0
V2 / √5-√2-1 = √2 / √5-√2-1-0
√18-3-√8-√52 = √18-3-√8-√52-0
√7-√12-√5 = √7-√12-√5-0
√5-e / 2 = √5-e / 2-0
√15-1 = √15-1-0
√2-√14-e = √2-√14-e-0
І взагалі для справжніх:
π –e = π-e-0
-12-1,5 = -12-1,5-0
100000-1 / 3-14.50 = 100000-1 / 3-14.50-0
300-25-1.3 = 300-25-1.3-0
4,5-2 = 4,5-2-0
-145-20 = -145-20-0
3,16-10-12 = 3,16-10-12-0
π-3 = π-3-0
π / 2- π / 4 = π / 2- π / 4-0
325,19-80 = 329,19-80-0
-54.32-10-78 = -54.32-10-78-0
-10000-120 = -10000-120-0
-58,4-6,52-1 = -58,4-6,52-1-0
-312,14-√2 = -312,14-√2-0
Множення
Ця математична операція також має свій нейтральний елемент або модуляційну властивість:
3x7x1 = 3 × 7
(5 × 4) x3 = (5 × 4) x3x1
Яке число 1, оскільки воно не змінює результату множення.
Це справедливо і для цілих чисел:
2 × 3 = -2x3x1
14000 × 2 = 14000x2x1
256x12x33 = 256x14x33x1
1450x4x65 = 1450x4x65x1
12 × 3 = 12x3x1
500 × 2 = 500x2x1
652x65x32 = 652x65x32x1
100x2x32 = 100x2x32x1
10000 × 2 = 10000x2x1
4x5x3200 = 4x5x3200x1
50000x3x14 = 50000x3x14x1
25 × 2 = 25x2x1
250 × 36 = 250x36x1
1500000 × 2 = 1500000x2x1
478 × 5 = 478x5x1
Для раціональних:
(2/3) x1 = 2/3
(1/4) x (2/3) = (1/4) x (2/3) x1
(3/8) x (5/8) = (3/8) x (5/8) x1
(12/89) x (1/2) = (12/89) x (1/2) x1
(3/8) x (7/8) x (6/7) = (3/8) x (7/8) x (6/7) x 1
(1/2) x (5/8) = (1/2) x (5/8) x 1
1 х (15/8) = 15/8
(4/96) x (1/5) x (1/7) = (4/96) x (1/5) x (1/7) x1
(1/8) x (1/79) = (1/8) x (1/79) x 1
(200/560) x (2/3) = (200/560) x 1
(9/8) x (5/6) = (9/8) x (5/6) x 1
Для ірраціональних:
ex 1 = e
√2 x √6 = √2 x √6 x1
√500 x 1 = √500
√12 x √32 x √3 = V√12 x √32 x √3 x 1
√8 x 1/2 = √8 x 1/2 x1
√320 x √5 x √9 x √23 = √320 x √5 √9 x √23 x1
√2 x 5/8 = √2 x5 / 8 x1
√32 x √5 / 2 = √32 + √5 / 2 x1
ex √2 = ex √2 x 1
(π / 2) x (3/4) = (π / 2) x (34) x 1
π x √3 = π x √3 x 1
І нарешті для справжніх:
2718 × 1 = 2718
-325 х (-2) = -325 х (-2) х1
10 000 х (25,21) = 10 000 х (25,21) х 1
-2012 х (-45,52) = -2012 х (-45,52) х 1
-13,50 x (-π / 2) = 13,50 x (-π / 2) x 1
-π x √250 = -π x √250 x 1
-√250 x (1/3) x (190) = -√250 x (1/3) x (190) x 1
- (√3 / 2) x (√7) = - (√3 / 2) x (√7) x 1
-12,50 x (400,53) = 12,50 x (400,53) x 1
1 х (-5638.12) = -5638.12
210,69 х 15,10 = 210,69 х 15,10 х 1
Відділ
Нейтральний елемент ділення такий же, як і при множенні, число 1. Дана величина, поділена на 1, дасть такий же результат:
34 ÷ 1 = 34
7 ÷ 1 = 7
200000 ÷ 1 = 200000
Або що таке саме:
200000/1 = 200000
Це справедливо для кожного цілого числа:
8/1 = 8
250/1 = 250
1000000/1 = 1000000
36/1 = 36
50000/1 = 50000
1/1 = 1
360/1 = 360
24/1 = 24
2500000/1 = 250000
365/1 = 365
А також для кожного раціонального:
(3/4) ÷ 1 = 3/4
(3/8) ÷ 1 = 3/8
(1/2) ÷ 1 = 1/2
(47/12) ÷ 1 = 47/12
(5/4) ÷ 1 = 5/4
(700/12) ÷ 1 = 700/12
(1/4) ÷ 1 = 1/4
(7/8) ÷ 1 = 7/8
Для кожного ірраціонального числа:
π / 1 = π
(π / 2) / 1 = π / 2
(√3 / 2) / 1 = √3 / 2
√120 / 1 = √120
008500/1 = √8500
√12 / 1 = √12
(π / 4) / 1 = π / 4
І взагалі для всіх реальних цифр:
3,14159 / 1 = 3,14159
-18/1 = -18
16,32 ÷ 1 = 16,32
-185000,23 ÷ 1 = -185000,23
-10000,40 ÷ 1 = -10000,40
156.30 ÷ 1 = 156.30
900000, 10 ÷ 1 = 900000.10
1325 ÷ 1 = 1325
Модулятивна властивість є важливою для алгебраїчних операцій, оскільки штучне множення або ділення на алгебраїчний елемент, значення якого дорівнює 1, не змінює рівняння.
Однак ви можете спростити операції зі змінними, щоб отримати більш простий вираз і досягти розв’язування рівнянь більш простим способом.
Загалом усі математичні властивості необхідні для вивчення та розвитку наукових гіпотез та теорій.
Наш світ сповнений явищ, які постійно спостерігаються і вивчаються вченими. Ці явища виражаються математичними моделями для полегшення їх аналізу та подальшого розуміння.
Таким чином, можна передбачити подальшу поведінку, серед інших аспектів, що приносить великі переваги, що покращують спосіб життя людей.
Список літератури
- Визначення натуральних чисел. Відновлено з: definicion.de.
- Поділ цілих чисел. Відновлено з: vitutor.com.
- Приклад модулятивного властивості Відновлено з: examplede.com.
- Натуральні числа. Відновлено з: gcfaprendelibre.org.
- Математика 6. Відновлено: colombiaaprende.edu.co.
- Математичні властивості. Відновлено з: wikis.engrade.com.
- Властивості множення: асоціативний, комутативний та розподільний. Відновлено з: portaleducativo.net.
- Властивості суми. Відновлено з: gcfacprendelibre.org.