- Вимірювання
- Варіації вимірювання
- Результати вимірювання та похибки
- - Похибка вимірювання
- - Розрахунок похибки вимірювання
- Варіантність та стандартне відхилення
- Список літератури
Детермінований експеримент , в статистиці, це той , який має передбачуваний і відтворений результат до тих пір , як одні і ті ж початкові умови і параметри зберігаються. Тобто, причинно-наслідковий зв’язок повністю відомий.
Наприклад, час, необхідний для переміщення піску годинника з одного відділення в інше, є детермінованим експериментом, оскільки результат передбачуваний і відтворюваний. Поки умови будуть однаковими, пройти шлях від капсули до капсули знадобиться той самий час.
Малюнок 1. Час, який пісок повинен переміщуватися з одного відсіку в інший, є детермінованим експериментом. Джерело: Піксабай
Багато фізичних явищ є детермінованими, деякі приклади:
- Предмет, щільніший за воду, наприклад камінь, завжди затопить.
- Поплавок, який менш щільний, ніж вода, завжди буде плавати (якщо тільки не буде застосовано сили, щоб він був занурений).
- Температура кипіння води на рівні моря завжди 100 ºC.
- Час, який потрібен для штампу, який скидається з відпочинку на падіння, оскільки визначається висотою, з якої він був скинутий, і цей час завжди однаковий (коли його скидають з тієї ж висоти).
Скориставшись прикладом кубиків. Якщо вона впала, навіть коли доводиться надавати їй однакову орієнтацію і завжди на одній висоті, важко передбачити, на якій стороні вона з’явиться, як тільки вона зупиниться на землі. Це був би випадковий експеримент.
Теоретично, якби такі дані, як: положення були відомі з нескінченною точністю; початкова швидкість та орієнтація штампу; форма (із закругленими або кутовими краями); і коефіцієнт відновлення поверхні, на яку вона падає, можливо, це можна було б передбачити за допомогою складних обчислень, які стикаються з матрицею, з'являться, коли вона зупиниться. Але будь-яке незначне коливання стартових умов дало б різний результат.
Такі системи є детермінованими і в той же час хаотичними, оскільки невелика зміна початкових умов змінює кінцевий результат випадковим чином.
Вимірювання
Детерміновані експерименти цілком вимірювані, але навіть вимірювання їх результату не є нескінченно точним і має певний запас невизначеності.
Візьмемо, наприклад, наступний повністю детермінований експеримент: опустити іграшковий автомобіль вниз по прямій похилій доріжці.
Малюнок 2. У детермінованому експерименті автомобіль опускається прямолінійним схилом. Джерело: Pixabay.
Він завжди звільняється від однієї і тієї ж відправної точки, обережно не даючи імпульсу. У цьому випадку час, який потрібен автомобілю для проїзду колії, повинен бути завжди однаковим.
Тепер дитина планує виміряти час, необхідний для перевезення доріжки на візку. Для цього ви будете використовувати секундомір, вбудований у ваш мобільний телефон.
Будучи спостережливим хлопчиком, перше, що ви помічаєте, - це те, що ваш вимірювальний прилад має граничну точність, тому що найменша різниця в часі, яку може виміряти секундомір, становить 1 соту секунди.
Потім дитина приступає до проведення експерименту і за допомогою мобільного секундоміра вимірює 11 разів - скажімо, щоб бути впевненим - час, який пройшов, щоб коляска подорожувала похилим літаком, отримуючи такі результати:
Хлопчик здивований, бо в школі йому сказали, що це детермінований експеримент, але для кожного заходу він отримав дещо інший результат.
Варіації вимірювання
Які можуть бути причини того, що кожне вимірювання має різний результат?
Однією з причин може бути точність інструменту, яка, як уже згадувалося, становить 0,01 с. Але зауважте, що відмінності в вимірах вище цієї величини, тому слід враховувати й інші причини, такі як:
- Невеликі варіації вихідної точки.
- Відмінності в старті і паузі секундоміра, обумовлені часом реакції дитини.
Що стосується часу реакції, то, звичайно, існує затримка від того, коли дитина побачить, як візок починає рухатися, до тих пір, поки він не натисне секундомір.
Так само після прибуття відбувається затримка через час реакції. Але затримки старту та прибуття компенсуються, тому отриманий час повинен бути дуже близьким до справжнього.
У будь-якому випадку компенсація затримки реакції не є точною, оскільки час реакції може мати невеликі коливання в кожному тесті, що пояснює відмінності в результатах.
Який тоді справжній результат експерименту?
Результати вимірювання та похибки
Щоб повідомити про кінцевий результат, ми повинні використовувати статистику. Давайте спочатку побачимо, як часто результати повторюються:
- 3.03s (1 раз)
- 3,04 (2 рази)
- 3,05 (1 раз)
- 3,06 с (1 раз)
- 3.08s (1 раз)
- 3.09с 1 раз
- 3,10s (2 рази)
- 3.11s (1 раз)
- 3.12s (1 раз)
Замовляючи дані, ми розуміємо, що не можна задати більш повторний режим або результат. Тоді результатом для звіт є середнє арифметичне, яке можна обчислити так:
Результат вищенаведеного розрахунку - 3,074545455. Логічно не має сенсу повідомляти про всі ці десяткові знаки в результаті, оскільки кожне вимірювання має лише 2 десяткових знаки точності.
Застосовуючи правила округлення, можна констатувати, що час, який витрачає візок на проїзд доріжки, - середнє арифметичне, округлене до двох знаків після коми.
Результат, про який ми можемо повідомити про свій експеримент:
- Похибка вимірювання
Як ми бачили на нашому прикладі детермінованого експерименту, кожне вимірювання має помилку, оскільки його неможливо виміряти з нескінченною точністю.
У будь-якому випадку, єдине, що можна зробити - це вдосконалити прилади та методи вимірювання, щоб отримати більш точний результат.
У попередньому розділі ми дали результат для нашого детермінованого експерименту часу, необхідного для руху іграшкового автомобіля по похилій доріжці. Але цей результат містить помилку. Тепер ми пояснимо, як обчислити цю помилку.
- Розрахунок похибки вимірювання
У вимірах за часом відмічається дисперсія у проведених вимірах. Стандартне відхилення - це часто використовувана форма в статистиці для повідомлення про поширення даних.
Варіантність та стандартне відхилення
Спосіб обчислення стандартного відхилення виглядає таким чином: спочатку ви знайдете дисперсію даних, визначену таким чином:
Якщо дисперсія взята квадратним коренем, то виходить стандартне відхилення.
Малюнок 3. Формули середнього та середнього відхилень. Джерело: Wikimedia Commons.
Стандартне відхилення для даних про час спуску іграшкового автомобіля:
σ = 0,03
Результат округлили до 2 знаків після коми, оскільки точність кожного з даних - 2 десяткові знаки. У цьому випадку 0,03s являє собою статистичну похибку кожного з даних.
Однак середнє або арифметичне середнє значення отриманих часів має меншу помилку. Середня похибка обчислюється шляхом ділення стандартного відхилення на квадратний корінь від загальної кількості даних.
Середня помилка = σ / √N = 0,03 / √11 = 0,01
Тобто статистична помилка середнього часу становить 1 соту секунди, і в цьому прикладі вона збігається з оцінкою секундоміра, але це не завжди так.
Як кінцевий результат вимірювання, він повідомляється далі:
t = 3,08s ± 0,01s - це час, який потрібен автомобілю іграшки для проїзду по похилій доріжці.
Зроблено висновок, що навіть коли це детермінований експеримент, результат його вимірювання не має нескінченної точності і завжди має похибку.
А також, щоб повідомити про кінцевий результат, потрібно, навіть коли це детермінований експеримент, використовувати статистичні методи.
Список літератури
- CanalPhi. Детермінований експеримент. Відновлено з: youtube.com
- MateMovil. Детермінований експеримент. Відновлено з: youtube.com
- Пішро Нік Х. Вступ до ймовірності. Відновлено з: ймовірність курсу
- Росс. Ймовірність та статистика для інженерів. Mc-Graw Hill.
- Статистика, як це зробити. Детерміновані: визначення та приклади. Відновлено з: statisticshowto.datasciencecentral.com
- Вікіпедія. Типове відхилення. Відновлено з: es.wikipedia.com
- Вікіпедія. Експеримент (теорія ймовірностей). Відновлено з: en.wikipedia.com